Achievement Level Descriptors Geometry

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Policy	MAFS	Students at this level	Students at this level	Students at this level	Students at this level
		demonstrate a below	demonstrate a satisfactory	demonstrate an above	demonstrate mastery of the
		satisfactory level of success	level of success with the	satisfactory level of success	most challenging content of the
		with the challenging	challenging content of the	with the challenging content	Florida Standards.
		content of the <i>Florida</i>	Florida Standards.	of the <i>Florida Standards</i> .	
		Standards.			
		A student performing at	A student performing at	A student performing at	A student performing at
		Level 2	Level 3	Level 4	Level 5
		Circles, Geome	etric Measurement, and Geometr	ic Properties with Equations	
Range	MAFS.912.	identifies that all circles are	uses a sequence of no more	uses the measures of different	explains why all circles are
	G-C.1.1	similar	than two transformations to	parts of a circle to determine	similar
			prove that two circles are	similarity	
			similar		
Range	MAFS.912.	solves problems using the	solves problems that use no	solves problems that use no	solves problems using at least
	G-C.1.2	properties of central angles,	more than two properties	more than two properties,	three properties of central
		diameters, and radii	including using the properties	including using the properties	angles, diameters, radii,
			of inscribed angles,	of tangents	inscribed angles, circumscribed
			circumscribed angles, and		angles, chords, and tangents
			chords		
Range	MAFS.912.	identifies inscribed and	creates or provides steps for	solves problems that use the	proves the unique relationships
	G-C.1.3	circumscribed circles of a	the construction of the	incenter and circumcenter of	between the angles of a
		triangle	inscribed and circumscribed	a triangle; justifies properties	triangle or quadrilateral
			circles of a triangle; uses	of angles of a quadrilateral	inscribed in a circle
			properties of angles for a	that is inscribed in a circle;	
			quadrilateral inscribed in a	proves properties of angles	
			circle; chooses a property of	for a quadrilateral inscribed in	
			angles for a quadrilateral	a circle	
			inscribed in a circle within an		
			informal argument		

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Range	MAFS.912.	identifies a sector area of a	applies similarity to solve	derives the formula for the	proves that the length of the
	G-C.2.5	circle as a proportion of the	problems that involve the	area of a sector and uses the	arc intercepted by an angle is
		entire circle	length of the arc intercepted	formula to solve problems;	proportional to the radius, with
			by an angle and the radius of	derives, using similarity, the	the radian measure of the angle
			a circle; defines radian	fact that the length of the arc	being the constant of
			measure as the constant of	intercepted by an angle is	proportionality
			proportionality	proportional to the radius	
Range	MAFS.912.	uses definitions to choose	uses precise definitions that	analyzes possible definitions	explains whether a possible
	G-CO.1.1	examples and non-	are based on the undefined	to determine mathematical	definition is valid by using
		examples	notions of point, line, distance	accuracy	precise definitions
			along a line, and distance		
			around a circular arc		
			uence, Similarity, Right Triangles,		
Range	MAFS.912.	represents transformations	uses transformations to	uses transformations to	[intentionally left blank]
	G-CO.1.2	in the plane; determines	develop definitions of angles,	develop definitions of circles	
	and	transformations that	perpendicular lines, parallel	and line segments; describes	
	MAFS.912.	preserve distance and angle	lines; describes translations as	rotations and reflections as	
	G-CO.1.4	to those that do not	functions	functions	
Range	MAFS.912.	chooses a sequence of two	uses transformations that will	uses algebraic descriptions to	applies transformations that
	G-CO.1.3	transformations that will	carry a given figure onto itself	describe rotations and/or	will carry a figure onto another
	and	carry a given figure onto	or onto another figure	reflections that will carry a	figure or onto itself, given
	MAFS.912.	itself or onto another figure		figure onto itself or onto	coordinates of the geometric
	G-CO.1.5			another figure	figure in the stem
Range	MAFS.912.	determines if a sequence of	uses the definition of	explains that two figures are	[intentionally left blank]
	G-CO.2.6	transformations will result	congruence in terms of rigid	congruent using the definition	
		in congruent figures	motions to determine if two	of congruence based on rigid	
			figures are congruent; uses	motions	
			rigid motions to transform		
			figures		
Range	MAFS.912.	identifies corresponding	shows that two triangles are	shows and explains, using the	justifies steps of a proof given
	G-CO.2.7	parts of two congruent	congruent if and only if	definition of congruence in	algebraic descriptions of
	and	triangles	corresponding pairs of sides	terms of rigid motions, the	triangles, using the definition of
	MAFS.912.		and corresponding pairs of	congruence of two triangles;	congruence in terms of rigid
	G-CO.2.8		angles are congruent using	uses algebraic descriptions to	motions that the triangles are
			the definition of congruence	describe rigid motion that will	congruent using ASA, SAS, SSS,
			in terms of rigid motions;	show ASA, SAS, SSS, or HL is	or HL
			applies congruence to solve	true for two triangles	
			problems; uses rigid motions		
			to show ASA, SAS, SSS, or HL is		
			true for two triangles		

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Range	MAFS.912. G-CO.3.9	uses theorems about parallel lines with one transversal to solve problems; uses the vertical angles theorem to solve problems	completes no more than two steps of a proof using theorems about lines and angles; solves problems using parallel lines with two to three transversals; solves problems about angles using algebra completes no more than two	completes a proof for vertical angles are congruent, alternate interior angles are congruent, and corresponding angles are congruent	creates a proof, given statements and reasons, for points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints
	G-CO.3.10	interior angles of a triangle, exterior angle of a triangle	steps in a proof using theorems (measures of interior angles of a triangle sum to 180,; base angles of isosceles triangles are congruent, the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length) about triangles; solves problems about triangles using algebra; solves problems using the triangle inequality and the Hinge theorem	theorems about triangles; solves problems by applying algebra using the triangle inequality and the Hinge theorem; solves problems for the midsegment of a triangle, concurrency of angle bisectors, and concurrency of perpendicular bisectors	medians of a triangle meet at a point; solves problems by applying algebra for the midsegment of a triangle, concurrency of angle bisectors, and concurrency of perpendicular bisectors
Range	MAFS.912. G-CO.3.11	uses properties of parallelograms to find numerical values of a missing side or angle or select a true statement about a parallelogram	completes no more than two steps in a proof for opposite sides of a parallelogram are congruent and opposite angles of a parallelogram are congruent; uses theorems about parallelograms to solve problems using algebra	creates proofs to show the diagonals of a parallelogram bisect each other, given statements and reasons	proves that rectangles and rhombuses are parallelograms, given statements and reasons

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Range	MAFS.912. G-CO.4.12 and MAFS.912. G-CO.4.13	chooses a visual or written step in a construction	identifies, sequences, or reorders steps in a construction: copying a segment, copying an angle, bisecting a segment, bisecting an angle, constructing perpendicular lines, including the perpendicular bisector of a line segment, and constructing a line parallel to a given line through a point not on the line	identifies sequences or reorders steps in a construction of an equilateral triangle, a square, and a regular hexagon inscribed in a circle	explains steps in a construction
			tric Measurement, and Geometri		
Range	MAFS.912. G-GMD.1.1	gives an informal argument for the formulas for the circumference of a circle and area of a circle	uses dissection arguments and Cavalier's principle for volume of a cylinder, pyramid, and cone	sequences an informal limit argument for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone	explains how to derive a formula using an informal argument
Range	MAFS.912. G-GMD.1.3	substitutes given dimensions into the formulas for the volume of cylinders, pyramids, cones, and spheres, given a graphic, in a real-world context	finds a dimension, when given a graphic and the volume for cylinders, pyramids, cones, or spheres	solves problems involving the volume of composite figures that include a cube or prism, and a cylinder, pyramid, cone, or sphere (a graphic would be given); finds the volume when one or more dimensions are changed	finds the volume of composite figures with no graphic; finds a dimension when the volume is changed
Range	MAFS.912. G-GMD.2.4	identifies the shapes of two-dimensional cross- sections formed by a vertical or horizontal plane	identifies a three-dimensional object generated by rotations of a triangular and rectangular object about a line of symmetry of the object; identifies the location of a horizontal or vertical slice that would give a particular cross-section; draws the shape of a particular two-dimensional cross-section that is the result of horizontal or vertical slice of a three-dimensional shape	identifies a three-dimensional object generated by rotations of a closed two-dimensional object about a line of symmetry of the object; identifies the location of a nonhorizontal or nonvertical slice that would give a particular cross-section; draws the shape of a particular two-dimensional cross-section that is the result of a nonhorizontal or nonvertical slice of a three-dimensional shape; compares and contrasts different types of slices	identifies a three-dimensional object generated by rotations, about a line of symmetry, of an open two-dimensional object or a closed two-dimensional object with empty space between the object and the line of symmetry; compares and contrasts different types of rotations

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Range	MAFS.912. G-GPE.1.1	determines the center and radius of a circle given its equation in general form uses coordinates to prove	completes the square to find the center and radius of a circle given by its equation; derives the equation of a circle using the Pythagorean theorem, the coordinates of a circle's center, and the circle's radius uses coordinates to prove or	derives the equation of the circle using the Pythagorean theorem when given coordinates of a circle's center and a point on the circle uses coordinates to prove or	derives the equation of a circle using the Pythagorean theorem when given coordinates of a circle's center as variables and the circle's radius as a variable
Range	G-GPE.2.4	or disprove that a figure is a parallelogram	disprove that a figure is a square, right triangle, or rectangle; uses coordinates to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals when given a graph	disprove properties of triangles, properties of circles, properties of quadrilaterals without a graph; provide an informal argument to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals; uses coordinates to prove or disprove properties of regular polygons when given a graph	completes an algebraic proof or writes an explanation to prove or disprove simple geometric theorems
Range	MAFS.912. G-GPE.2.5	identifies that the slopes of parallel lines are equal	creates the equation of a line that is parallel given a point on the line and an equation, in slope-intercept form, of the parallel line or given two points (coordinates are integral) on the line that is parallel; creates the equation of a line that is perpendicular given a point on the line and an equation of a line, in slope-intercept form	creates the equation of a line that is parallel given a point on the line and an equation, in a form other than slope-intercept; creates the equation of a line that is perpendicular that passes through a specific point when given two points or an equation in a form other than slope-intercept	proves the slope criteria for parallel and perpendicular lines; writes equations of parallel or perpendicular lines when the coordinates are written using variables or the slope and y-intercept for the given line contains a variable
Range	MAFS.912. G-GPE.2.6	finds the point on a line segment that partitions the segment in a given ratio of 1 to 1, given a visual representation of the line segment	finds the point on a line segment that partitions, with no more than five partitions, the segment in a given ratio, given the coordinates for the endpoints of the line segment	finds the endpoint on a directed line segment given the partition ratio, the point at the partition, and one endpoint	finds the point on a line segment that partitions or finds the endpoint on a directed line segment when the coordinates contain variables
Range	MAFS.912. G-GPE.2.7	finds areas and perimeters of right triangles, rectangles, and squares when given a graphic in a real-world context	when given a graphic, finds area and perimeter of regular polygons where at least two sides have a horizontal or vertical side; finds area and perimeter of parallelograms	finds area and perimeter of irregular polygons that are shown on the coordinate plane; finds the area and perimeter of shapes when given coordinates	finds area and perimeter of shapes when coordinates are given as variables

ALD	Standard	Level 2	Level 3	Level 4	Level 5	
	Modeling with Geometry					
Range	MAFS.912. G-MG.1.1	uses measures and properties to model and describe a real-world object that can be modeled by a three-dimensional object	uses measures and properties to model and describe a real-world object that can be modeled by composite three-dimensional objects; uses given dimensions to answer questions about area, surface area, perimeter, and circumference of a real-world object that can be modeled by composite three-dimensional objects	finds a dimension for a real- world object that can be modeled by a composite three-dimensional figure when given area, volume, surface area, perimeter, and/or circumference	applies the modeling cycle to determine a measure when given a real-world object that can be modeled by a composite three-dimensional figure	
Range	MAFS.912. G-MG.1.2	calculates density based on a given area, when division is the only step required, in a real-world context	calculates density based on area and volume and identifies appropriate unit rates	finds area or volume given density; interprets units to solve a density problem	applies the basic modeling cycle to model a situation using density	
Range	MAFS.912. G-MG.1.3	uses ratios and a grid system to determine values for dimensions in a real- world context	applies geometric methods to solve design problems where numerical physical constraints are given; writes an equation that models a design problem that involves perimeter, area, or volume of simple composite figures; uses ratios and a grid system to determine perimeter, area, or volume	constructs a geometric figure given physical constraints; chooses correct statements about a design problem; writes an equation that models a design problem that involves surface area or lateral area; uses ratios and a grid system to determine surface area or lateral area	applies the basic modeling cycle to solve a design problem that involves cost; applies the basic modeling cycle to solve a design problem that requires the student to make inferences from the context	
Range	MAFS.912. G-SRT.1.1a, b	identifies the scale factors of dilations	chooses the properties of dilations when a dilation is presented on a coordinate plane, as a set of ordered pairs, as a diagram, or as a narrative; properties are: a dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged; the dilation of a line segment is longer or shorter in the ratio given by the scale factor	explains why a dilation takes a line not passing through the center of dilation to a parallel line and leaves a line passing through the center unchanged or that the dilation of a line segment is longer or shorter in ratio given by the scale factor	explains whether a dilation presented on a coordinate plane, as a set of ordered pairs, as a diagram, or as a narrative correctly verifies the properties of dilations	

ALD	Standard	Level 2	Level 3	Level 4	Level 5
Range	MAFS.912. G-SRT.1.2 MAFS.912. G-SRT.1.3	determines if two given figures are similar identifies that two triangles are similar using	uses the definition of similarity in terms of similarity transformations to decide if two figures are similar; determines if given information is sufficient to determine similarity establishes the AA criterion for two triangles to be similar by	shows that corresponding angles of two similar figures are congruent and that their corresponding sides are proportional proves that two triangles are similar if two angles of one	explains using the definition of similarity in terms of similarity transformations that corresponding angles of two figures are congruent and that corresponding sides of two figures are proportional proves the Pythagorean theorem using similarity
	and MAFS.912. G-SRT.2.4	the AA criterion	using the properties of similarity transformations	triangle are congruent to two angles of the other triangle, using the properties of similarity transformations; uses triangle similarity to prove theorems about triangles	
Range	MAFS.912. G-SRT.2.5	finds measures of sides and angles of congruent and similar triangles when given a diagram	solves problems involving triangles, using congruence and similarity criteria; provides justifications about relationships using congruence and similarity criteria	completes proofs about relationships in geometric figures by using congruence and similarity criteria for triangles	proves conjectures about congruence or similarity in geometric figures, using congruence and similarity criteria
Range	MAFS.912. G-SRT.3.6, MAFS.912. G-SRT.3.7 and MAFS.912. G-SRT.3.8	calculates unknown side lengths using the Pythagorean theorem given a picture of a right triangle; recognizes the sine, cosine, or tangent ratio when given a picture of a right triangle with two sides and an angle labeled	solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem in applied problems; uses the relationship between sine and cosine of complementary angles	assimilates that the ratio of two sides in one triangle is equal to the ratio of the corresponding two sides of all other similar triangles leading to definitions of trigonometric ratios for acute angles; explains the relationship between the sine and cosine of complementary angles; solves for missing angles of right triangles using sine, cosine, and tangent	uses the modeling context to solve problems that require more than one trigonometric ratio and/or the Pythagorean theorem; solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem when side lengths and/or angles are given using variables