Grade 7 Mathematics

Achievement level descriptions (ALDs) describe a student's level of achievement (e.g., Below Satisfactory, On-Grade-Level, Above Satisfactory) on a large-scale assessment. The purpose of the ALD development framework is to enable valid inferences about student content area knowledge and skill in relation to a state's content standards measured on a large-scale assessment.

Achievement Level	Achievement Level Descriptions
Level 1	Students performing at Level 1 are just beginning to access the challenging content of the B.E.S.T. Standards.
Level 2	Students at this level demonstrate a below satisfactory level of success with the challenging content of the Florida B.E.S. T. Standards. A student performing at Level 2: - applies the Laws of Exponents to identify equivalent numerical expressions, using whole number bases with whole number exponents. - identifies different but equivalent forms of rational numbers including fractions, mixed numbers, repeating decimals, and percentages to solve mathematical problems. - solves mathematical problems using order of operations of up to four steps with integers including grouping symbols, whole-number exponents, and absolute value. - adds, subtracts, multiplies, and divides positive rational numbers in the same form. - solves real-world problems involving one of the four operations with rational numbers in the same form and at least one number is negative. - applies properties of operations to add and subtract linear expressions with one term having a rational coefficient. - solves one-step inequalities in one variable within a mathematical context and represents solutions algebraically or graphically. - solves two-step equations in one variable within a mathematical context, where all terms are rational numbers of the same form. - identifies the ratios to solve real-world percent problems. - given the proportion involving whole numbers, applies ratios to solve realworld problems involving proportions having no conversions. - solves mathematical problems involving a single conversion of units across different measurement systems wherein the given measurement is a whole number. - determines whether two quantities have a proportional relationship by examining the relationship from a graph. - given a mathematical context, graphs proportional relationships from a table. - given any representation except a written description of a proportional relationship, translates the representation into a table or equation. - solves one-step real-world problems involving proportional relationships wherein the values are whole numbers. - identifies expressions that could be used to find the areas of trapezoids, parallelograms, or rhombi. - solves mathematical problems involving the area of regular polygons by decomposing them into triangles or quadrilaterals.

Achievement Level	Achievement Level Descriptions
Level 2	- explores the proportional relationship between circumferences and diameters of circles and identifies expressions that could be used for the circumference of a circle to solve mathematical problems when an image is given. - identifies an expression that could be used to find the area of a given circle. - identifies the scale factor in mathematical problems involving dimensions of geometric figures. - given a net in a mathematical or real-world context, determines the corresponding right circular cylinder, or, given the right circular cylinder, determines the corresponding net. - determines the expression that can be used to find the surface area for a given visual model with labeled dimensions for a right circular cylinder. - determines the expression that could be used to find the volume of right circular cylinders using a visual model. - identifies if the data set contains an outlier. - given two numerical representations of data, calculates the means, medians, and ranges and uses those measures to make comparisons between the two populations. - given categorical data from a random sample, identifies a ratio that describes the proportional relationship. - uses proportional reasoning to construct and display data of no more than four categories in circle graphs. - given a real-world numerical data set, chooses an appropriate graphical representation. - determines the sample space for a single experiment involving tossing a fair coin or rolling a fair die. - classifies a given probability of a chance event written as a percentage or decimal as likely or unlikely. - finds the theoretical probability of an event related to a simple experiment, which include tossing a fair coin or rolling a fair die, and expresses that probability as a fraction. - uses a simulation of a simple experiment to find experimental probabilities.
Level 3	Students at this level demonstrate on-grade-level success with the challenging content of the Florida B.E.S.T. Standards. A student performing at Level 3: - applies the Laws of Exponents to evaluate numerical expressions and identify equivalent numerical expressions, limited to whole-number exponents and rational number bases. - rewrites rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals, and percentages to solve mathematical problems. - solves mathematical problems using multi-step order of operations with positive rational numbers, including grouping symbols, whole-number exponents, and absolute value. - adds, subtracts, multiplies, and divides rational numbers in the same form. - solves real-world problems involving one of the four operations with rational number and at least one number is a different form and at least one number is a negative.

Achievement Level	Achievement Level Descriptions
Level 3	- applies properties of operations to add and subtract linear expressions with more than one term having rational coefficients in the same form. - determines whether two linear expressions with rational coefficients in the same form are equivalent. - writes or solves one-step inequalities in one variable within a mathematical context and represents solutions algebraically or graphically. - writes or solves two-step equations in one variable within a mathematical context, where all terms are rational numbers of the same form. - identifies the ratios and applies the ratio to solve real-world percent problems. - applies ratios, involving whole numbers, to solve real-world problems involving proportions having no conversions. - solves mathematical problems involving the conversion of units across different measurement systems. - determines whether two quantities have a proportional relationship by examining a table or a graph. - determines the constant of proportionality within a mathematical context from a table or graph. - given a mathematical context, graphs proportional relationships from a table or equation. - given a written description of a proportional relationship, translates the representation into a table or equation. - solves one-step real-world problems involving proportional relationships wherein at least one value is a rational number. - applies formulas to find the areas of parallelograms and rhombi. - solves mathematical problems involving the area of polygons or composite figures by decomposing them into triangles or rectangles. - explores the proportional relationship between circumferences and diameters of circles and applies a formula for the circumference of a circle to solve mathematical problems. - applies a formula to find the area of a circle to solve mathematical problems. - solves mathematical problems involving dimensions and areas of geometric figures, including scale drawings and scale factors. - given a mathematical context, finds the surface area of a right circular cylinder given the figure's net. - solves real-world problems involving surface area of right circular cylinders using a visual model. - solves mathematical problems involving volume of right circular cylinders using a visual model. - determines an appropriate measure of center or measure of variation to summarize numerical data, represented graphically without outliers in a given context. - given two graphical representations of data, calculates and/or determines the measures of center or measures of variability and uses those measures to make comparisons and interpret results about the two populations. - given categorical data from a random sample, determines the ratio that can be used to make predictions about a population. - uses proportional reasoning to construct, display, and interpret data of no more than four categories in circle graphs.

Achievement Level	Achievement Level Descriptions
Level 3	- given a real-world numerical or categorical data set, chooses an appropriate graphical representation. - determines the sample space for a simple experiment with non-repeated elements (for example a bag containing 1 red marble, 1 green marble, and 1 yellow marble). - given the probability of a chance event, interprets the likelihood of it occurring and compares probabilities of chance events wherein the probabilities are given in the same form. - finds the theoretical probability of an event related to a simple experiment, which include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag, and spinning a fair spinner, and expresses that probability as a fraction. - uses a simulation of a simple experiment to find experimental probabilities and compare them to theoretical probabilities, and expresses that probability as a fraction.
Level 4	Students at this level demonstrate an above satisfactory level of success with the challenging content of the Florida B.E.S.T. Standards. A student performing at Level 4: - applies the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to whole-number exponents and rational number bases. - rewrites rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals, and percentages to solve realworld problems. - solves mathematical problems using multi-step order of operations with rational numbers including grouping symbols, whole-number exponents, and absolute value. - adds, subtracts, multiplies, and divides rational numbers in different forms with procedural fluency. - solves real-world problems involving more than one of the four operations with rational numbers and at least one number is a negative and/or at least one is a different form. - applies properties of operations to add and subtract linear expressions with rational coefficients. - determines whether two linear expressions are equivalent. - writes and solves one-step inequalities in one variable within a mathematical context and represents solutions algebraically and graphically. - writes and solves two-step equations in one variable within a mathematical or real-world context, where all terms are rational numbers. - solves multi-step real-world percent problems. - applies ratios, involving rational numbers, to solve real-world problems involving proportions. - solves mathematical or real-world problems involving multiple conversions of units across different measurement systems. - determines whether two quantities have a proportional relationship by examining any of these representations: table, graph, or written description.

Achievement Level	Achievement Level Descriptions
Level 4	- determines the constant of proportionality within a mathematical or realworld context from any of these representations: table, graph, or written description of a proportional relationship. - given a mathematical or real-world context, graphs proportional relationships from a table, equation, or written description. - given any representation of a proportional relationship, translates the representation into a written description. - solves multi-step real-world problems involving proportional relationships. - applies formulas to find the areas of trapezoids, parallelograms, and rhombi. - solves mathematical or real-world problems involving the area of polygons or composite figures by decomposing them into triangles and quadrilaterals. - explores the proportional relationship between circumferences and diameters of circles; applies a formula for the circumference of a circle to solve mathematical and real-world problems. - determines an appropriate measure of center or measure of variation to summarize numerical data, represented numerically or graphically, taking into consideration the context with outliers. - given two numerical or graphical representations of data, calculates and/or determines the measures of center and measures of variability and uses those measures to make comparisons, interpret results, and draw conclusions about the two populations. - given categorical data from a random sample, uses proportional relationships to make predictions about a population. - uses proportional reasoning to construct, display, and interpret data for up to six categories in circle graphs. - given a real-world numerical or categorical data set, chooses and creates an appropriate graphical representation. - determines the sample space for a simple experiment including repeated elements (such as a bag containing 2 red marbles, 1 green marble, and 3 yellow marbles). - given the probability of a chance event, interprets the likelihood of it occurring and compares probabilities of chance events wherein the probabilities are given in different forms. - finds the theoretical probability of an event related to a simple experiment, which include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag, and spinning a fair spinner, and expresses that probability as a percentage and/or as a decimal. - uses a simulation of a simple experiment to find experimental probabilities and compare them to theoretical probabilities, and expresses that probability as a percentage and/or as a decimal.

Achievement Level	Achievement Level Descrip
Level 5	Students at this level demonstrate mastery of the most challenging content of the Florida B.E.S.T. Standards. A student performing at Level 5: - applies the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to whole-number exponents and rational number bases, and provides justification. - rewrites rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals, and percentages to solve mathematical and real-world problems, and provides justification for the form chosen. - analyzes an error in a mathematical problem using multi-step order of operations with rational numbers including grouping symbols, whole-number exponents, and absolute value, and justifies the reasoning. - solves real-world problems involving more than one of the four operations with rational numbers and interprets the solution in the context of the situation. - analyzes an error in applying the properties of operation to add and subtract linear expressions with rational coefficients and justifies the reasoning. - justifies why two linear expressions are or are not equivalent using properties of operations. - writes and solves one-step inequalities in one variable within a mathematical context, represents solutions algebraically and graphically, and interprets the solution in context of the situation. - writes and solves two-step equations in one variable within a real-world context, where all terms are rational numbers and interprets the solution in context of the situation. - solves multi-step real-world percent problems and interprets the solution in the context of the situation. - applies previous understanding of ratios to solve real-world problems involving proportions and interprets the solution in the context of the situation. - solves and interprets the solution in the context of the situation of real-world problems involving multiple conversions of units across different measurement systems. - determines whether two quantities have a proportional relationship by examining any of these representations: table, graph, or written description; for a proportional relationship, makes the connection between the constant of proportionality and explains that the ratio between the two quantities is a proportional relationship. - determines and interprets the constant of proportionality within a mathematical or real-world context from any of these representations: table, graph, or written description of a proportional relationship. - given a mathematical or real-world context, graphs proportional relationships from a table, equation or a written description and uses the graph, table, or equation to find any values in the proportional relationship. - given any representation of a proportional relationship, translates the representation to any of the following: written description, table, or equation and provides a justification for why the two representations show the same proportional relationship.

Achievement Level	Achievement Level Descriptions
Level 5	-solves real-world problems involving proportional relationships and interprets the solution in the context of the problem. solves mathematical or real-world problems involving the area of multiple polygons or multiple composite figures by decomposing the shapes in different ways and showing how they are equivalent. applies a formula for the circumference of a circle to solve mathematical and real-world problems, and interprets the solution in the context of the situation. describes the relationship between the formula for the area of a rectangle and that of a circle; applies a formula to find the area of a circle to solve mathematical and real-world problems; and interprets the solution in the context of the situation. - solves mathematical or real-world problems involving dimensions and areas of geometric figures, including scale drawings and scale factors, and interprets the solution in context of the situation. - solves real-world problems involving surface area of right circular cylinders, and interprets the solution in the context of the situation. - solves mathematical or real-world problems involving volume of right circular cylinders, and interprets the solution in the context of the situation. - determines an appropriate measure of center or measure of variation to summarize numerical data, represented numerically or graphically, and compares the effect of the outlier on each measure of data.
-given two numerical or graphical representations of data, calculates and/or determines the measures of center and measures of variability and uses those measures to make comparisons, interpret results, draw conclusions, and make predictions about the two populations. - given categorical data from a random sample, uses proportional relationships, make predictions and make suggestions for improving the likelihood of the prediction. given a real-world numerical or categorical data set, chooses, creates, and justifies an appropriate graphical representation. analyzes an error in finding the theoretical probability of an event related to a simple experiment and justifies the reasoning.	
- uses a simulation of a simple experiment to find experimental probabilities	
and compare them to theoretical probabilities, and expresses that probability	
as a percentage, fraction, and/or as a decimal, and explains the relationship	
between the number of trials of an experiment and its theoretical probability.	

